Transport in nanostructures: A comparison between nonequilibrium Green functions and density matrices
نویسنده
چکیده
Stationary electric transport in semiconductor nanostructures is studied by the method of nonequilibrium Green functions. In the case of sequential tunneling the results are compared with density matrix theory, providing almost identical results. Nevertheless, the method of Green functions is easier to handle due to the availability of an absolute energy scale. It is demonstrated, that the transport in complicated structures, like quantum cascade lasers, can be described in reasonable agreement with experiment.
منابع مشابه
Title: Nonequilibrium electron transport in two-dimensional nanostructures modeled using Greens functions and the finite-element method
Rights: © 2004 American Physical Society (APS). This is the accepted version of the following article: Havu, P. & Havu, V. & Puska, M. J. & Nieminen, R. M. 2004. Nonequilibrium electron transport in two-dimensional nanostructures modeled using Greens functions and the finite-element method. Physical Review B. Volume 69, Issue 11. 115325/1-13. ISSN 1550-235X (electronic). DOI: 10.1103/physrevb....
متن کاملNonequilibrium linked cluster expansion for steady-state quantum transport
We generalize the linked cluster expansion of Matsubara Green functions into nonequilibrium situations. This allows us to compute nonequilibrium correlation functions and, consequently, physical observables for interacting quantum systems with intermediate interaction strengths. As a specific example, we study nonlinear dc transport in a resonant tunneling system with electron-phonon interactio...
متن کاملVacancy Defects Induced Magnetism in Armchair Graphdiyne Nanoribbon
Spin-polarized electronic and transport properties of Armchair GraphdiyneNanoribbons (A-GDYNR) with single vacancy (SV), two types of configurations fordouble vacancy (DV1, DV2) and multi vacancy (MV) defects are studied by nonequilibriumGreen’s function (NEGF) combined with density functional theory (DFT).The results demonstrate that the A-GDYNR with the SV has the lowe...
متن کاملBistability in the Electric Current through a Quantum-Dot Capacitively Coupled to a Charge-Qubit
We investigate the electronic transport through a single-level quantum-dot which is capacitively coupled to a charge-qubit. By employing the method of nonequilibrium Green's functions, we calculate the electric current through quantum dot at finite bias voltages. The Green's functions and self-energies of the system are calculated perturbatively and self-consistently to the second order of inte...
متن کاملPhoton-assisted transport in semiconductor nanostructures
In this review we focus on electronic transport through semiconductor nanostructures which are driven by ac fields. Along the review we describe the available experimental information on different nanostructures, like resonant tunneling diodes, superlattices or quantum dots, together with the theoretical tools needed to describe the observed features. These theoretical tools such as, for instan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001